HUMAN METABOLITES OF BOSENTAN PRODUCED BY ENZYMES IN HYPHA’S POLYCPSTM CYTOCHROME P450 KIT

Jonathan Steele1, Antonio de Riso2, Headley Williams3, Richard Phipps1, Silvia Bardoni3, Chris Drake5, Stephen Wrigley1, Julia Shanu-Wilson3, Frank Scheffler1, Sebastian Schulz2 and John Ward4
1Hypha Discovery Ltd., Brunel Science Park, Uxbridge, UB8 3QG, UK
2Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK

Abstract: A cell-free kit of cytochrome P450 enzymes and ferredoxin / ferredoxin reductase redox partners, termed PolyCYPSTM, is under development for generating scalable quantities of oxidised metabolites. Cytochrome P450s in the kit have been derived from Hypha’s talented biotransforming actinomycete are capable of generating human and other mammalian metabolites of drug compounds. The catalytic abilities of two P450 enzymes in the kit, which have been cloned from two different actinomycete species into E.coli, are illustrated using bosentan. Bosentan has one major active metabolite (Ro 48-5033), formed by hydroxylation at the t-buty position1, and which accounts for 10-20% of the total pharmacological activity on administration of the drug. Two other minor inactive metabolites (Ro 47-8634 and Ro 64-1056) are produced via O-demethylation of bosentan and Ro 48-50331.

Bosentan was screened as part of a larger set of substrates against 6 of Hypha’s prolific oxidative biotransformation strains - all of these strains produced a hydroxylated metabolite with one strain also producing a demethylated metabolite. Selected cytochrome P450 enzymes mined from these six strains were then tested for their ability to produce the reported major and minor human metabolites of bosentan.

Background
The experimental anti-cancer drug bosentan is an endothelin receptor antagonist used for treatment of pulmonary hypertension. Bosentan has one major active metabolite (Ro 48-5033), which is formed by hydroxylation at the t-buty position1, and which accounts for 10-20% of the total pharmacological activity on administration of the drug. Two other minor inactive metabolites (Ro 47-8634 and Ro 64-1056) are produced via O-demethylation of bosentan and Ro 48-50331.

Process summary
PolyCYPSTM6.1 and 14.1 were mined from two of Hypha’s actinomycete strains (strains 43 and 48 respectively). A selection of the P450s were successfully cloned into E.coli and co-expressed with selected redox partners.

Bosentan was incubated with reconstituted lyophilized enzyme material from the two enzymes termed PolyCYPSTM6.1 and PolyCYPSTM14.1, together with the NADPH regenerating system (NADPHrs), as shown in the adjacent process flow. Additionally the potential for sequential reactivity was assessed by incubating purified Ro 47-8634 with PolyCYPSTM6.1. All samples were analyzed by LC-UV-MS.

Results
• PolyCYPSTM6.1 was able to biotransform bosentan into the major active human metabolites Ro 48-5033 which is hydroxylated at the t-buty position.
• PolyCYPSTM14.1 catalyzed O-demethylation of bosentan to yield the minor inactive human metabolite Ro 47-8634.
• The third minor metabolite Ro 64-1056 was formed by incubation of purified Ro 47-8634 with PolyCYPSTM6.1

Process flow for biotransformation of bosentan by Hypha’s PolyCYPSTM enzymes
Reconstitute lyophilised enzyme mixture and mix with bosentan at a final concentration of 0.125 mg/ml
Add NADPHrs and shake in a microtitre plate at 200rpm for 16hrs (or in the supplied vial at 100 rpm for 16 hrs) at 27°C
Stop the reaction with acetonitrile, centrifuge and analyse supernatant by LC-UV-MS

Major human metabolites of bosentan generated by PolyCYPSTM enzymes 6.1 and 14.1 derived from two different actinomycete strains, as confirmed by LC-MS

Conclusions
• Two of Hypha’s talented biotransformation strains are each a source of at least one functional CYP enzyme, exemplified by PolyCYPSTM 6.1 and 14.1, which have utility for hydroxylating and demethylating drugs to generate an array of human metabolites. Enzymes can be used singly or in sequential or multiple formats to create secondary products.
• The kit will give scalable point-of-use access to hydroxylated human metabolites and other novel derivatives useful for lead diversification and late stage functionalization.

References

Hypha gratefully acknowledges the receipt of an Innovate UK award which assisted development of the technology in association with Prof. Jon Ward at UCL, who received a corresponding BBRC award.

ABOUT HYPHA DISCOVERY
Hypha Discovery Ltd is a UK-based microbial biotechnology company helping partners in pharmaceutical and agrochemical R&D worldwide succeed through the production of human and other mammalian metabolites, as well as specialising in lead-diversification and production of microbiially-derived chemicals. Clients routinely access our biocatalysis technology to generate phase I and II metabolites for MetID, stability testing, use as analytical standards and for producing larger amounts for pharmacological testing.